On weighted Iyengar type inequalities on time scales
نویسندگان
چکیده
منابع مشابه
On Weighted Čebyšev–grüss Type Inequalities on Time Scales
In this study, we establish weighted Čebyšev-Grüss type inequalities on time scales. Mathematics subject classification (2000): 26D15.
متن کاملNew Weighted Čebyšev–ostrowski Type Integral Inequalities on Time Scales
In this paper we obtain some weighted Čebyšev-Ostrowski type integral inequalities on time scales involving functions whose first derivatives belong to Lp (a,b) (1 p ∞) . We also give some other interesting inequalities as special cases. Mathematics subject classification (2010): 26D15, 26E70.
متن کاملWeighted Ostrowski, Trapezoid and Grüss Type Inequalities on Time Scales
In this paper we first derive a weighted Montgomery identity on time scales and then establish weighted Ostrowski, trapezoid and Grüss type inequalities on time scales, respectively. These results not only provide a generalization of the known results, but also give some other interesting inequalities on time scales as special cases.
متن کاملSome Opial-Type Inequalities on Time Scales
and Applied Analysis 3 where r t is positive and continuous function with ∫X a dt/r t < ∞, and if x b 0, then ∫b X |x t |∣∣x′ t ∣∣dt ≤ 1 2 ∫b
متن کاملHardy–Leindler Type Inequalities on Time Scales
In this paper, we will prove some new dynamic inequalities on a time scale T. These inequalities, as special cases, when T= R contain some integral inequalities and when T= N contain the discrete inequalities due to Leindler. The main results will be proved by using the Hölder inequality and a simple consequence of Keller’s chain rule on time scales. From our results, as applications, we will d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2009.04.001